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1.00 Background

The conversion of land from its native state to an agricultural use commonly
results in a significant loss of soil carbon (Mann, 1985; Davidson and Ackerman,
1993). Globally, this loss is estimated to account for as much as 1/3 of the net CO,

emissions for the period of 1850 to 1980 (Houghton et al, 1983). Roughly 20 to 40
percent of original soil carbon is estimated to be lost as CO, as a result of agricultural

conversion, or "decomposition enhancement", and global models use this estimate
along with land conversion data to provide agricultural contributions of CO,
emissions for global carbon budgets (Houghton and others, 1983; Schimel, 1995).

As yet, erosional losses of carbon are not included in global carbon budgets
explicitly as a factor in land conversion nor implicitty as a portion of the
decomposition enhancement. However, recent work by Lal et al (1995) and by
Stallard (1998) suggests that significant amounts of eroded soil may be stored in
man-made reservoirs and depositional environments as a result of agricultural
conversion. Moreover, Stallard points out that if eroding soils have the potential for
replacing part of the carbon trapped in man-made reservoirs, then the global carbon
budget may grossly underestimate or ignore a significant sink term resulting from the
burial of eroded soil.

Soil erosion rates are significantly (10X) higher on croplands than on their
undisturbed equivalents (Dabney et al, 1997). Most of the concern over erosion is
related to diminished productivity of the uplands (Stallings, 1957; McGregor et al,
1993; Rhoton and Tyler, 1990) or to increased hazards and navigability of the
lowlands in the late 1800's to early 1900's. Yet because soil carbon is concentrated at
the soil surface, with an exponential decline in concentration with depth, it is clear
that changes in erosion rates seen on croplands must also impact soil carbon storage

and terrestrial carbon budgets as well.

1.10 Objectives

A primary goal of the Mississippi Basin Carbon Project (Sundquist and
others, 1998) is to define simple, functional relationships between hillslope
erosion/sedimentation and soil organic matter dynamics. To meet this goal, small
watersheds were chosen for studies of upland soils in context of and collaboration
with ongoing erosion/sedimentation studies. The study sites are located in
watersheds in the upland portion of the Yazoo River basin in northeastern
Mississippi, where loess soils are known for their high erodibility. A full accounting
of hydrology, geography, and site description was reported by Huntington and others
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(1998) in a companion report, which includes extensive maps, figures, and data
pertaining to this report.

In this report we present soil analytical data for forested and agricultural sites
managed by the National Sedimentation Laboratory of USDA Agricultural Research
Service (Oxford, Miss.) and USDA Forest Service (Holly Springs, Miss.). A
descriptive, text format is used to present our theories and strategies, site and field
information, methods of measurement, application of data sets, and references. A
table format is used to present data for easy downloading from the Internet site
http://geochange.er.usgs.gov/pub/carbon/

1.20 Approach

Important controls on soil carbon storage include climatic/edaphic controls
such as temperature and moisture; plant type; parent material controls such as clay
content and soil drainage class. The depth distributions of temperature, moisture, and
particle size vary greatly within a soil profile. Therefore potential decomposition and
C storage in soils are likely highly sensitive to depth as well. Erosion and burial
affect the depth of soil carbon and the potential for organic-matter decomposition
through depth-dependent controls on soil temperature, moisture, plant input, and
particle size Therefore, a sampling strategy was designed to allow for stratification by
these important variables.

Soil samples were collected to represent soil properties at erosional ("upper")
and depositional ("lower") slope positions of small drainage basins for cultivated and
uncultivated landuse pairs. Ridgetop positions and slope transects (catenas) were
also sampled at some localities. Data from sample analysis are used to determine,
compare, or contribute to the determination of (1) inventory of C and N in soil on
hillslope positions, (2) turnover times of soil organic matter at these hillslope
positions, including assessments of sizes and turnover of fast to slower pools of
organic matter, and ultimately, (3) rates of carbon input by net primary production
(NPP) and slope deposition as well as loss by decomposition and erosion at various
hillslope positions. Documentation and data sets described in this report include (1)
site location, (2) descriptive field data, (3) physical, chemical, and isotopic analysis
of (solid phase) soil samples, and (4) isotopic analysis of soil gas collected from
static field chambers. 4

As a strategy for meeting the overall goal of defining simple, functional
relationships between hillslope erosion/sedimentation and soil organic matter
dynamics, we further refined our goals:

(1) Estimate rates of carbon input, turnover, and accumulation in the soils of

ridgetop, eroding "upper" slope and depositional "lower" slope positions. The
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primary measurements are soil carbon inventories, soil incubations, and measures
of *C and "°C content of solid and gas phases.

(2) Relate our estimates of dynamics of soil carbon to slope processes at the hillslope
scale.

(3) Help in the development of conceptual models that relate erosional-depositional
dynamics to soil-carbon dynamics at various hillslope, watershed, and regional
scales.

Parameters can be defined for a simple mass balance equation in which changes in
carbon storage over time are defined by inputs and losses of carbon to and from a
sampling site. At the sample-site scale, soil carbon is balanced by inputs of net
primary production and depositional carbon; losses include loss to decomposition,
fire, erosion, and dissolved organic carbon. Each term can be further subdivided into
pools of organic carbon that decompose at different rates. For three pools of soil
carbon with three different turnover (or replacement) times, inputs to each
depositional term are separated and modeled as vanables that change over time
according to climate and nutrient controls on NPP or to depositional controls on
sedimentation rates. Losses of carbon from each pool are modeled as first order or
fractional losses, with k,, k,, and k; indicating the inverse of the turnover time in

years.
Parameterizing Soil Carbon at the Upland Site Scale
dC/dt = changing C with time = Inputs - Losses
= [production + I deposit -Ldecomp - Lfire - Leros - LDOC
= Iprod +1dep - kC - L fire -Leros -LDOC
= Iprod +1dep - (k,C, + k,C, + k;C;) - L fire - Leros -LDOC
= Iprod +Idep - (k,C, + k,C, + k,C;) - L fire - (Ler, +Ler, + Ler;) - LDOC

= Iprod + (Idep, +Idep, + Idep;) - (k,C, + k,C, + k,C;) - L fire - (Ler, + Ler,
+ Ler;) -LDOC

where,



I = inputs and L = losses

Production = net primary production

Ideposit such as from overland flow or alluviation

Ldecomp = decomposition

Lfire = losses of C to burning

Leros = losses of C to erosion such as overland or rill erosion

LDOC = losses of C from soil layers to leaching of dissolved organic carbon

k,, k,, k; = decomposition coefficients for pools number 1 (fastest), 2 (intermediate),
3 (slow) of organic carbon

C,, C,, C, = storage terms for pools # 1, 2, 3 of organic carbon

er,, €r,, er;, dep,, dep,, dep, = erosion and deposition terms for pools #1, 2, 3

The types of data that are collected or estimated for site-specific studies and the
model parameters that are estimated from these data can be classified into four types
of measurements: (1) carbon and nitrogen inventories (2) decomposition rates (3)
erosion rates and (4) deposition rates. Measurements such as the total carbon
inventory (C,+C,+C,) can be determined directly. However, partitioning the organic
carbon into separate terms requires a variety of measurements, calculations, and
modeling (Harden and others, in press) or using fractionation techniques for the
organic matter (Trumbore, 1994).

Model terms (1-4) and types of data collected to define model terms

1. Terms: C, N inventories on landforms and model terms TC, C,, C,, C,
Data: '*C, *C, N measurements of select samples of bulk or fractionated soil

carbon.

2Temsk ,C k,C,  k ,C, for decomposition coefficients and flux rates
Data: incubation CO, flux, 14C of incubation Co,, 13C of incubation CO,, respiration

chamber CO, flux, 14C of chamber Co,, 13C of chamber CO,soil temperature, soil

moisture '*C and >C of soil organic matter fractions

3. Terms LTC, Lm, Ld2, Lﬂs for erosional losses of carbon
Data: USDA erosion-plot sediment C, N and organic fraction C,N
USDA weirs (export term) sediment C, N
USDA watersheds and weir sediment "Be

soil 1°Be




soil 'Be

4. Terms Ide,, Idel, Idez, Ide3 for depositonal carbon
Data: lower slope Cs, Pb, pollen dating
soil '°Be

soil 'Be

Other model parameters derived from the literature and other sources:
Terms Iprod and Lfire

Information sources Ceres, Century models

2.00 Methods

2.10 Field methods.

Soil profiles were described according to USDA-NRCS methods (Soil Survey Staff,
1951) in which a variety of field properties are recorded for soil horizons at different
depths. Properties such as soil color, consistence, texture, structure, root size and
density were recorded on field sheets.

The weight of soil organic carbon and total N per land surface area is referred
to as the carbon inventory of a site. Measurements of percent organic C, bulk density
and depth are included in this data. The calculation is depth-dependent and can be
measured or calculated to 0.5m, 1m, or greater depths. Most of MBCP-U
measurements include data to 1m depths (see section 9. for data manipulations).

Soil samples were collected in such a way that volumetric data could be
combined with gravimetric data to provide measurements in units of volume (3
dimensional), area (2 dimensional), and depth (1 dimensional). Bulk density, field
moisture content, and depth increments are included in soil sampling. Bulk density
samples were collected with a variety of tools, including cores of known diameter
(mineral soil) or boxes (litter and organic horizons) of known area. Samples were
collected into the core or box of known volume.

Our most consistent and accurate density measurements for soils were
obtained with a coring device by Soil Moisture Corporation ("whomper") in which
internal rings can be disassembled for intact samples. Less consistent and less
accurate measurements were obtained from a hand-driven soil AMS core with internal
sleeves; we found that a slightly crimped tip on the commercial core gave densities
comparable to "whomper"; however, in earlier trials where the tip had a straight
internal barrel, bulk densities were 30% underestimated. As a result, in most cases
for mineral soils, bulk density samples were taken at depth intervals of 0-5, 5-10, at
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15, at 30, at 50, at 70, and at 90 cm with "whomper”". In some cases, the revised tip
of the AMS probe was used for depths of 0-5, 5-10, 10-20, 20-40, 40-60, 60-80,
and 80-100 cm. Gravimetric samples used for analysis of C, N, water content, and
1sotopic analysis were sampled at depth intervals of 0-5, 5-10, 10-20, 20-40, 40-60,
60-80, and 80-100 cm. Volumetric and gravimetric samples were weighed on
collection day on a calibrated balance to 0.01 g.

Samples of soil gas were collected through a soil chamber in line with a
LICOR gas analyzer. These sites were monitored seasonally for soil CO, flux, by T.

Huntington (Huntington and others, in prep). For soil 14CO2 and 13COz, the soil
chamber was placed into a sand ring that was confined between two pieces of PVC
rings. The chamber was “scrubbed” by placing a soda lime trap (along with a
desiccant to protect the soda lime), which were in line with the circulating air for a

period of time that allowed 3 volumes of chamber air to pass through the soda lime.
This way, only a small fraction of CO, in circulating chamber air was likely to be

contributed from the atmosphere, leaving the majority of CO, to be respired from
roots and soil heterotrophs. After “scrubbing” the chamber gas with soda lime, a
valve was used to close the soda lime trap and allow CO, to build up in the soil
chamber. A valve was then used to trap soil CO, onto molecular sieve material for
determination of 14C from the CO2 and, in some cases, 13C from the COZ.

2.20 Sample Preparation and Drying

Field notes were used to inventory all samples entering the laboratory.
Samples were visually inspected and weighed as received. Any inconsistency
between field descriptions or weights and laboratory observations was resolved
before sample preparation began. If samples taken for analytical, moisture or bulk
density measurements could not be processed immediately they were stored in the
dark, at 4 °C.

Soil and litter samples were laid out on open shelves, in an isolated room, and
were allowed to air dry to a constant weight. Temperature in the air drying room
ranged from 20-30 °c during this process. Air dry moisture samples, or splits of air
dry samples, were then oven dried to constant weight in a forced-draft oven. Litter
samples, as well as any other samples that appeared to contain greater than 20 percent
organic matter, were oven dried at a temperature of 65°C to avoid loss of organic
matter by oxidation or decomposition. All other samples were oven dried at a
temperature of 105°C. Air-dry and oven dry weights from this procedure were used
in the calculations of percent moisture and bulk density.

To prepare air dry soil samples for analysis the samples were first gently
crushed using a ceramic mallet and plate. The crushed sample material was
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thoroughly mixed and then split into analytical and archived portions. The analytical
split was weighed and sieved using a 2mm screen. Material not passing the 2mm
screen was removed, weighed and transferred to a plastic bag marked with the sample
identification, the starting weight of the analytical split and the weight of the material
not passing through the 2 mm screen. Material passing the 2mm screen was then
ground by hand, using a mortar and pestle, to pass through a 60 mesh (0.246 mm)
screen. The ground material was carefully mixed and either the entire sample or a
representative split was placed in a labeled sample container. Archival materials were
placed in labeled plastic bags and boxed for storage.

Air dry litter samples were described, photographed, spread onto a work table
and then thoroughly mixed using a spatula and a scoop. The well-mixed samples
were then split into subsamples for oven drying, analytical chemistry and archiving.
Inhomogeneous portions of the sample, such as large sections of bark or large
diameter (> 1 cm) material, were placed in separate bags and included with the
archive split.

The analytical split of the air dry litter sample was prepared for analysis by
first manually chopping or crushing larger material and then milling the entire sample
to pass a 0.5 mm screen using a cyclone sample mill. The milled sample was then
thoroughly mixed and a representative sample placed in a labeled, glass sample bottle.

The archive split of the litter was placed in a labeled, plastic bag for storage.
The bags used for storage were large enough that the entire air-dry archive split could
be placed in the bag without crushing the sample. Archive materials were then boxed
for storage.

All excess sample materials and waste were oven dried at 120°C for 72 hours
prior to disposal.

2.30 Total Carbon, inorganic carbon, organic carbon, total nitrogen, 'C, "*N
Total carbon (TC) was determined by measuring the carbon dioxide (CO))
produced by combusting the sample in a stream of oxygen (O,). Total carbon

measurements were made using either a LECO carbon determinator (WR-112) or a
Fisons NA1500 elemental analyzer (EA)/ Optima isotope ratio mass spectrometer
(IRMS). Inorganic carbon (IC) was determined by measuring the CO, generated by
heating a sample at 105 °C in acid. A UIC coulometer was used for this
measurement. Organic carbon was calculated as the difference between TC and IC.
A Fisons NA15950 EA/(?Eu'ma IRMS was also used for the determination of total
nitrogen and for N and C measurements.

Total carbon measurements made using the LECO carbon determinator were
carried out by analyzing between 0.1 and 1.0 g of sample, depending on expected



carbon concentration. The sample material was mixed with copper metal and iron
chip accelerators in a ceramic crucible, the ceramic crucible was placed in a radio
frequency fumace and the sample combusted in a stream of carbon dioxide free
oxygen. Gases generated by the combustion process were passed through a series of

catalysts, to ensure complete oxidation, and scrubbers, to remove components that
would interfere with the CO2 measurement. The CO2 was then absorbed onto

molecular sieve at room temperature. When sample combustion and CO, collection

were complete the molecular sieve was heated to 350 °c, releasing the absorbed CO,,
and the CO, measured using a thermal conductivity detector.

The procedure using the Fisons BNAISOI(S) EA/Optima IRMS for the
determination of total carbon, total nitrogen, Cand N employed a Fisons NA 1500
elemental analyzer for sample combustion and separation of CO, and N, from other
combustion products. The gas stream from the elemental analyzer then entered the
Optima 1[1{3MS thliCh was used to obtain analytical data for total carbon, total
nitrogen, Cand N. For this analysis between 1 and 30 mg of sample, depending
on the estimated carbon concentration, was loaded into a tin capsule and the capsule
tightly crimped to exclude atmospheric gases. Samples were then combusted at 1000
°C in a stream of oxygen. The gases generated during combustion then pass through

heated combustion and reduction reactors to achieve quantitative conversion of carbon
and nitrogen from the sample to CO2 and nitrogen (N). The combustion products

next passed through a chromatographic column where CO, and N were separated
and then introduced into the mass spectrometer for measurement. Elemental
concentrations were calculated based on instrument responses for calibration
standards. Isotope ratio measurements were corrected for fractionation effects and
calibrated based on materials with known values.

In the early stages of this study,] 5the Fisons NA1500 EA/Optima IRMS was
used only to obtain total nitrogen and N data. 13However, total carbon data for
samples analyzed using the LECO instrument, and C data for samples analyzed in a
conventional extraction line/mass spectrometer lab, showed excellent agreement with
data for the same samples analyzed using the EA/IRMS instrument. As a result of
this data comparison the EA/IRMS was used for nearly all TC, IC, C and N
analyses performed on solid samples.

In addition to calibration materials, three standard materials were routinely
included in all EA/IRMS sample runs. These materials were a well analyzed sample
of ethylenediaminetetracetic acid (EDTA) obtained from Fisons Instruments, S.p.a., a
marine sediment (MESS-1) issued by the Chemistry Division of the Canadian
National Research Council and a river sediment (NBS1645) issued by the National
Bureau of Standards, now known as National Institue of Standards and Technology.
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Precision estimates, expressed as relative standard deviation, were 31.36-6.5 percent
for total carbolrsl 3.7-6.5 percent for total nitrogen, 1.4-2.9 percent for C, and 20-47
percent for N, based on results for the standard materials (table below).
Approximately 3 percent of all samples were also analyzed in duplicate. For these
duplicate runs the range, expressed as a percentage of the average of the duplicate
runs, was less than 1 gercent for total carbon, less1 ghan 2 percent for total nitrogen,
less than 1 percent for C and about 15 percent for N.

1.D. total %C total %N delta 13C delta 15N
(Yersd) (Yorsd) (%ersd) (Yersd)

EDTA 3.6 3.7 1.5 -
MESS-1 4 3.9 2.9 20.1
NBS-1645 6.5 6.5 1.4 47.2

Inorganic carbon was determined by measuring the CO, generated by treating
approximately 100 mg of sample with 2N perchloric acid (HCIO,) and heating the
mixture at 105 °C. The evolved gases were first passed through an acidic (pH of 3)
saturated silver sulfate (Ag SO,) solution containing 3percent hydrogen peroxide
(H202) to remove contaminants and then were bubbled through a partially aqueous
solution containing ethanolamine and a colorimetric indicator. The CO, was
quantitatively absorbed and converted to a strong, titratable acid by the ethanolamine.
The amount of CO, evolved from the sample was measured by integrating the amount
of current required to electrically generate enough base to titrate the acid.

Because pH measurements made on soils from both the Goodwin Creek (GC)
and Nelson Farm (NF) sites indicated that no inorganic carbon (IC) should be
present, inorganic carbon was determined on only a selected set of samples. Results
for this set of samples (GCPU1.20i1, GCPU1.40i1, GCPL1.20i1, GCPL1.4011,
NFPU1.20i2, NFPU1.40i3, NFPL1.20i1, NFPL1.40i1) indicated that IC
concentrations were less than 0.005 percent. No other IC measurements were made
for the GC or NF sites.

The uncertainty in the IC determinations, expressed as relative standard
deviation, is approximately 5 percent when IC is present. The range of IC values for
standard materials run in duplicate was less than one percent of the carbon value.

2.40 Radiocarbon

The ''C content of the solid and gas phases of soil is used to calculate overall
turnover time or to partition the organic carbon into more labile or stable pools.

(From Trumbore and others, in prep) YC s produced in the stratosphere by the
14N(n,p) "C reaction. The ' 'C atom is oxidized rapidly to 14CO, which has a lifetime
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of months before it is oxidized to 14COZ. Most ' 'C production occurs in the
stratosphere, but the long lifetime of CO, enables 14CO2 to become well mixed
throughout the troposphere.  The steady state "*C content of the atmosphere is
determined by the exchange of carbon in CO, with that in ocean and biospheric
reservoirs. Because of the relatively rapid cycling of carbon between the atmosphere
and living biomass, most plants maintain a “c specific activity (or /e ratio
corrected for mass-dependent isotope fractionation effects) that equals that of
atmospheric CO,. Similarly, animals reflect the "*C/"*C of the plants (or animals)
they consume. Upon the death of an organism, the "*C in its tissues is no longer
replenished, and decays with a half life of 5730 years. If the tissue remains intact and
isolated from exchange, the “c/*C ratio may be used to indicate the time since the
death of the organism. This is the basis for radiocarbon

Calculation of a radiocarbon age requires the assumption that the **C content
of the carbon originally fixed in plant tissues equaled that of the atmosphenic CO, in
1950 (0.95 times the activity of oxalic acid, or Modern). In fact, the 14C content of
the atmosphere has varied with time because of changes in the production rate of “c
(cosmic ray flux and magnetic field variations) and because of changes in the
distribution of carbon among ocean, biosphere and atmospheric reservoirs. These
vanations, deduced from the 14C content of cellulose of known age taken from the
annual growth rings of trees, are generally less than 10 percent over the past 7,000
years. More recent changes in the "*C content of atmospheric CO, have resulted from
dilution by "*C-free fossil-fuel-derived carbon and by the production of e during
atmospheric testing of thermonuclear weapons (bomb 14C). The latter effect
dominates other natural and fossil fuel effects, as the atmospheric burden of C was
approximately doubled in the few years preceding the implementation of the Nuclear
Test Ban Treaty in 1964. This isotopic spike in the global carbon system provides a
means for radiocarbon to be a useful tracer of carbon cycle processes on time scales
of decades.

We express "C data in the geochemical Delta notation (Delta = capitol greek
delta), the deviation in parts per thousand (per mil) from an absolute standard (95
times the activity of NBS oxalic acid measured in 1950). In this notation, zero equals
the "'C content of 1895 wood, positive values indicate the presence of 'bomb’
radiocarbon, and negative values indicate the predominance of C fixed from the
atmosphere more than several hundred years ago.

One important correction made in calculating the Delta **C value is of note
here - the ' 'C correct needed to account for isotopic fractionation effects. As an
example, consider the dlsC difference between atmospheric CO2 and carbon fixed

dunng photosynthesis by C3 plants, approximately 20%..  Assuming the
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fractionation of ' C will be roughly twice that of Pc (since the mass difference

between 12 and 14 is twice that between 12 and 13), the 14C contents of a tree and the
CO, which it is fixing through photosynthesis will differ by approximately 40, even

though both CO, and the tree are the same 'age'. To account for fractionation

effects, the sample and standard are corrected to a measured value of the same
sample, or if not measured, are corrected the value -25 per mil (as noted in
parentheses). The standard oxalic acid is corrected in the same way, to -19 per mil.

Unlike the closed systems represented by intact macrofossils, such as seeds
or pollen, bulk SOM is a heterogeneous reservoir with a variety of turnover times, to
which carbon is continuously added (as new plant matter) and lost (as leached organic
carbon or COZ). The radiocarbon content of SOM can not be interpreted as a 'date’,
but represents the average age of a carbon atom in this reservoir.

The breakdown of C into faster and slower-cycling pools may be determined
by combining several approaches - see the articles in the reference list for more
information (this is an evolving research field and no one approach is accepted as
valid for all soils).

For soils that are accumulating organic matter, either in upper layers that are
recovering from erosion, or in the total soil profile that has evolved since deposition
of the loess deposit some 12,000 yr ago, we model the accumulation of carbon
(where C is C inventory) as a time sequence described by inputs (I) and
decomposition (k) according to the following equation:

dC/dt =1 - kC (1)
and Ct=I/k*(1-exp~ )  (2)

where

C is carbon mass in units of mass per area, t is ime in years, I is input rate in mass
per area per year, and k is a decomposition coefficient in units of time-1. This
approach assumes that decomposition is proportional to total mass. Time can be
modeled over periods of years, decades, centuries or, as for incubations, fractional

years.

2.50 Particle size analysis

Samples were selected to characterize particle-size distribution of soils. Based
on limited size of samples, not all soil horizons and not all sites were fully
characterized for particle size. Two preparations, conventional dispersal and water-
based dispersal, were used to characterize sand, silt and clay particles.

12,



Conventional dispersal of soil samples is based on the principal that soil
particles aggegate to form coarser particles and must be dispersed chemically or
physically. Sodium hydroxide, sodium hexametaphosphate, and citrate-bicarbonate
were used for dispersal Gee and Bauder (1986, p. 400-401), and samples were
sieved (Gee and Bauder, p 401) and analysed by pipet (Gee and Bauder, p. 401-402)
for determination of USDA sizes for sand (> 0.05 mm or 50 micrometer), coarse silt
(0.02 to 0.05 mm or 20 to 50 micrometer), fine silt (0.002 to 0.02 mm or 2 to 20
micrometer), and clay (<0.002mm or <2 micrometer) fractions.

Water dispersal was an experiment on aggregation. Samples were shaken
overnight in water, and subjected to the pipet methods (Gee and Bauder, p. 401-
402). Sand plus silt in this procedure adds up to >100% because of errors in
summing sands and partitioning weights.

3.00 Data-Set Identification

The data presented represent sampling from the fall of 1996 to the fall of
1997. Four data sets are included for Mississippi sites:
Miss_Site (site location and explanation)
Miss_Field (field descriptions of soils)
Miss_Soil (chemical,physical,isotopic data from soils)
Miss_Isotope (14C of soil samples)

Miss_Psize

The "Miss_site" file includes site locations and explanations of site identification,
reasons for site choices, and any further information that might help to revisit the site
or to find a comparable site for other studies. In essence, the Miss_Site files are
considered to be the "mother of all soil files"; all other data files are coded in a way to
tie in specifically to the _Site file, which describe location, site conditions, dates, and
other pertinent information about the excavation sitc where most soil samples of this
study originate. In practicality, the MBCP-Upland Soils Database is structured as a
set of tables in both microsoft access (_mdb) files and as tab-delimited ASCII (_rdb)
files. Records in each of the four types of files (Miss_Site, Miss_Field, Miss_Soil,
Miss_Isotope,Miss_Psize) form a unique file that relate on the fields PROFILE and
DEPTH.

The "Miss_Field" files include those properties described by USDA for field
characterization and classification. Soil texture (relative abundance of sand, silt,
clay), color (Munsell soil color charts), structure (aggregation), root abundance, and

consistence are typically included in field descriptions and provide information on the
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relative degree of weathering, permeability, and erosion based on comparisons
among sites or to published soil descriptions (see for example USDA, 1987).

The "Miss_Soil" file includes solid phase analyses needed to determine
carbon and nitrogen inventory in soils (bulk density, %C %N, C/N ratio in organic
matter) and isotopic measurements used for determining decomposition or turnover
times (13C and "N measurements of soil organic matter). Soil moisture data (ficld
moisture content good only for the day of collection; %moisture in air-dry samples)
are also included.

The "Miss_Isotope" file includes radiocarbon analyses on solid and gas-phase
samples. The "Miss_Psize" file includes particle size analysis of size fractions

3.10 Labeling schemes

Solid phase soil samples are collected in depth increments (soil horizons) in a
vertical array below a primary site location (for example profile number 1 where a
core was sampled) within a general site (for example at the upper, erosional site of a
hillslope). Gas-phase sampling and in-situ measurements are collected within a
hilllslope position (upper, erosional) but at separate locations. Whereas soil pits and
cores are destructive, gas sampling may re-occupy the same primary site several times
over the course of a year. The overall strategy for data collection is replicate
measurements at each upper (erosional) and lower (depositional) hillslope positions in
each cultivated and uncultivated sites. For Mississippi, the cultivated sites are located
within a USDA-ARS research farm, the Nelson Farm, in watershed 2 (Dabney and
others, 1997). Samples and observations from that site are coded "NF" followed by
a letter designating the overall sample type ("P" for profile; "I" for incubation; "F" for
fractionation; "cg" for chamber gas) followed by the slope position "U" (upper) or
"L" (lower), followed by increasing numbers for consecutive samplings. For
example NFPU1 and NFPU2, for the first two profiles sampled at the upper hillslope
position of the slope at Nelson Farm.

For soil samples, a decimal is used to designate depth increments at the
primary site with the basal horizon depth (in cm) listed to the right of the decimal
point, for example NFPU1.20 for 20 cm basal depth or NFPU1.200 for 200 cm
basal depth. Lower case letters are used to indicate the intended purpose of the
sample and its potential for other uses (a,b,m,f,i for analytical, bulk density, moisture
content, fractionation, incubation samples respectively), for example
NFPU1.20a,b,m.
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3.20 Data Set Descriptions

Five categories of data sets are presented, including site and location data
(Miss_Site), field data (Miss_Field), soil analytical data (Miss_Soil), soil isotopic
data (Miss_Isotope) and particle size data (Miss_Psize). Column headings and units
for each of these data sets are described herein:

3.21 Miss_Site files
This file contains the following information in text format:

Site location, slope description, landuse notes, date of sampling, purpose of
sampling, field personnel.

3.22 Miss_Field files

This file contains the following information in column format:
PROFILE traces to the _Site file as discussed above

DEPTH indicates depth in cm of sampling increment

DESCRIBE includes a general description of the sampled horizon (A horizon,
oxidized B horizon, etc.) (see Soil Survey Staff, 1981).

STRUCTUR, includes soil structure following conventions of Soil Survey Staff,
1981
TEXTURE, includes soil texture class following conventions of Soil Survey Staff,
1981

MCOLOR includes moist soi! color following conventions of Soil Survey Staff, 1981

MCONSIS includes moist consistence following conventions of Soil Survey Staff,
1981

WCONSIS includes wet consistence following conventions of Soil Survey Staff,
1981

ROOQOTS includes root abundance following conventions of Soil Survey Staff, 1981.
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3.23 Miss_Soil files

This file contains analytical data on the solid phase of soil samples, using numbers
assigned 1n the _Site file and labeling scheme described above.

PROFILE refers to the profile number in the Miss_Site file for information regarding
location and sampling conditions.

DEPTH is the depth in cm of the base of the soil horizon sample; the top depth is
generally the basal depth of the superjacent soil horizon.

THICKNES is horizon thickness in cm and is used to track bulk density and is equal
to basal depth minus top depth of sampling increment

AIRDRYM air dry soil moisture is reported as gravimetric moisture content (grams
water per gram oven-dry soil) and can be used to convert other data to the oven-dry
basis : WW = DW/(1+DW) and DW = WW/(1-WW), where DW is water content on
the dry-weight basis, and WW is water content on the wet-weight basis (Gardner,
1986). Using this relationship, %C or Bulk Density, which are reported per g air-dry
soil, can be converted to the more conventional per g oven-dry basis:

%C (air dry basis) ¥* WW/(1-WW) = %C (oven-dry basis)

VOLUMEM volumetric moisture content (cm”3 of water per cm*3 of soil volume)

BDENSITY bulk density is the grams of solid, air-dry soil material per cubic
centimeter of volume, which is measured as the air-dry weight of a known volume of

soil.

TOTALCI total carbon content is expressed as gravimetric percent on an air-dry soil
basis. Samples were analyzed on the < 2 mm soil on a LECO combustion analyzer.
Inorganic C was content determined for selected samples and was not present in

Nelson Farm or Goodwin Creek soils therefore total C is considered organic C.

TOTALC?2 total carbon content is expressed as gravimetric percent on an air-dry soil
basis. Samples were analyzed on the <2mm soil fractions (once homogenized and
ground to <60 mesh) on a Fisons NA1500 elemental analyzer. Inorganic C was
content determined for selected samples and was not present in Nelson Farm or
Goodwin Creek soils therefore total C is considered organic C.
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TOTALN total N content is expressed as gravimetric percents on an air-dry soil basis.
Samples were analyzed on the <2mm soil fractions (once homogenized and ground to
<60 mesh) on a Fisons NA 1500 elemental analyser. We report the C/N ratio.
CNRATIO the C/N ratio is calculated from totalc2/totalN

SOILCI13 stable isotope '>C content of the < 2 mm (bulk) soil is presented in Delta

notation

SOILN15 stable isotope '°N content of the < 2 mm (bulk) soil is presented in Delta
notation

CDENSITY carbon density is calculated from TOTALC2*THICKNES*BDENSITY

CSTORAGE carbon storage is calculated from TOTALC2*THICKNES*BDENSITY

3. 24 Miss_Isotope files

This file contains ' C anal yses for solid and chamber gas samples.
PROFILE profile number keys back to Miss_Site files
SAMPLE sample identification keys back to _Site files

DEPTH indicates depth of sample;NA not applicable usually refers to chamber
samples collected at the soil surface

LABID Laboratory identification numbers are University of California Irviene and

Lawrence Livermore Lab numbers
TYPE sample type analyzed
DEL13C values for Delta 'C
DEL14C values for Delta 'C

LLABSD values for error in radiocarbon counting
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3.25 Miss_Psize files

This file contains the following information in column format

SamplelD sample identification keys back to _site files

USDASAND standard dispersant, percent by weight of particles greater than 50

micrometer in size

USDACOSI standard dispersant, percent by weight of particles between 20 and 50

micrometers in size

USDAFISI standard dispersant, percent by weight of particles between 2 and 20

micrometers in size

USDACL standard dispersant, percent by weight of particles less than 2 micrometers

in size

WSAND water dispersant, percent by weight of particles greater than 50 micrometer

in size

WCOSI water dispersant, percent by weight of particles between 20 and 50

micrometers in size

WFISI water dispersant, percent by weight of particles between 2 and 20

micrometers in size

WCLAY Water dispersant, percent by weight of particles less than 2 micrometers in

size

4.00 Application of the Data Set

As stated earlier, the overall intention of the data set is to gain insights into
and begin to model the interaction between the carbon cycle and erosion-
sedimentation cycle. The data sets are best suited to address C and sedimentation
processes on small hillslopes and exiting small hillslopes through runoff.

Models developed for C utilize Equations 1 and 2 for carbon mass balance
along with a decay constant for radiocarbon, 0.0001245. Separate but interactive
models are written for 3 pools of soil organic matter that decompose at fast, slow,
and extremely slow ("passive") rates. We chose three pools for this stage of research
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based on various other soil carbon studies (Trumbore, 1994; Parton, 1987), but
recognize that soil organic matter is highly dynamic, heterogeneous, and potentially a
continuum of sizes and turnover times of carbon pools.

For modeling a sampling site, three pools of carbon are calculated
independently according to inputs by NPP (Iprod in Table 2) and by deposition
(Idep), losses to decomposition (Ldecomp) by the turnover time of the pool, and
losses to erosion (Leros). The three pools are combined for amount and radiocarbon
content of the soil gas (sum of k,C,, k,C,, and k,C, for amount and FM *k,C,) for
radiocarbon content, where FM, is Fraction Modern of the SOM, pool). The erosion
term (Ler) is modeled separately for each SOM pool (Ler;) by multiplying the
sediment loss times the SOM pools distribution of the topsoil.

Turnover times can be constrained somewhat by the *“C content of soil gas
and bulk soil in models described above and in comparison to data. The turnover
time of SOM, is best constrained by € of soil gas, because soil gas is dominated by
respiration of this fast pool. However, the size of the SOM, pool must be known or
estimated in order for the 14CO2 to be used for turnover times. In one approach, we
used the CENTURY ecosystem model (Parton, 1987) to estimate pool sizes. The
sizes and turnover times of SOM pools can also be estimated from incubation fluxes
(Fries and others, 1997; see Collins and others, 1997).
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6.00 Investigators

For information on site location, site selection, temperature and moisture data, and

chamber data, please contact:

Tom Huntington

US Geological Survey

3039 Amwiler Rd. Suite 130
Atlanta, GA 30360-2824
770-903-9147
thunting@usgs.gov
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For  information on  sampling  strategy, sample submittal, soil
characterization/description, analytical data, and isotopic data, and modeling please
contact:

Jennifer Harden

U.S. Geological Survey

345 Middlefield Rd. MS 962

Menlo Park, CA 94025

650-329-4949

jharden@usgs.gov

For information on soil analysis, analytical data, and sample tracking, please contact:
Terry Fries

U.S. Geological Survey

345 Middlefield Rd. MS 962

Menlo Park, CA 94025

650-329-5281

tfries@usgs.gov
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Miss_Site

Mississippi Upland Soil Data Base. Table 1. Site description and location
BC Baptist Cemetary, Hardwood and grass

GC Goodwin Creek, Mississippi native hardwood

NF  Nelson Farm, Mississippi cultivated basin

CvV Coffeeville, Pine Forest

BCPR1 Baptist Cemetary Profile at Ridgetop no 1. From Hiway 29, take Good
Hope road south to its end, turn right; In 1/2 mile go Left at Citgo gas station.
Cemetary is 1/2 mile down road on right site. It is divided into 2 sections; Samples
taken in second section on top of right getween outside edge of old iron fence (NW
side) near a cypress tree.Samples taken 11-13-97 with modified shelby Art’s
Machine Shop AMS tube by J. Gaudinski and G.Buell. Grass and oak and Cedar
trees form shaded lawn of Cemetary. Graves here data 1856 to about 1900AD.
Local slope 0-3%; loess hills of Peoria loessJ. Gaudinski and G.Buell with JHarden
nearby

BCPR3 Baptist Cemetary Profile at Ridgetop no 3. see BCPR1 for location.
Uneroded Grenada soil. Located between the iron fence of very old gravesite and
cypress tree of the Methodist! Cemetary within Goodwin Creek watershed. Samples
taken 11-14-97 while raining with modified shelby (AMS) tube. Grass and oak and
cypress trees form shaded lawn of Cemetary. Graves here data 1856 to about
1900AD. Local slope 0-3%:; loess hills of Peoria loess J. Gaudinski and G.Buell
with JHarden nearby

CVPR1 Coffeeville Profile on Ridgetop no. 1; uneroded Grenada? soilUSFS
experimental watershed near Coffeeville,MIss.;Located at ridge, south of weir ;
Samples taken 11-16-97 with modified shelby AMS core Pine forest at least 80
years old; site had been farmed before that.

GCPR1 Goodwin Creek Profile at Ridgetop no 1; slightly eroded Grenada soil in
hardwood forest.; located in wsh 10 of Goodwin Creek, to south and uphill about
30m of GCPU sites. Samples taken 11-15-97 with adapted shelby AMS core;
sampled by JHarden, G.Buell, J.Gaudinski, S.Trumbore

NFPR2 Nelson Farm Profile at Ridgetop no 2; located near road at top of watershed
2Samples collected 11-11-97; 5% slope ; soybean; sampled by JHarden, G.Buell,
J.Gaudinski, S.Trumbore

GCPU1 Goodwin Creek Profile Upper slope no. 1 ;slightly to moderately eroded
Grenada soil; located in subwatershed of watershed 10 of Goodwin Creekdescribed
and sampled 12-4-96 with shelby tube to 40 cm depth by JHardenmature oak
woodland; loess hills of Peoria loess;10%slope uphill from GCPL . Sampled by
JHarden with THuntington nearby

GCPU2 Goodwin Creek Profile Upper slope no.2 ;slightly to moderately eroded
Grenada soil; located in subwatershed of watershed 10 of Goodwin Creekdescribed
and sampled 12-4-96 with shelby tube by Jharden; mature oak woodland; loess hills
of Peoria loess;10%slope uphill from GCPL



GCPU3 Goodwin Creek Profile Upper slope no. 1 ;slightly eroded Grenada soil;
located in subwatershed of watershed 10 of Goodwin Creekdescribed and sampled
12-4-96 with shelby tube to 40 cm depths; oak woodland; loess hills of Peoria
loess; 10%slope uphill from GCPL; Sampled by JHardenmature

GCPUS5 Goodwin Creek Profile Upper slope no. 5 ;slightly eroded Grenada soil;
located in subwatershed of watershed 10 of Goodwin Creekdescribed and sampled
from pit face 11-15-97 for bulk density and moisture to a depth of 60 cm using
Bulk Density core (whomper) and Hrings and from 60 to 100 cm using modified
shelby AMS core. Litter samples collected by excavating rectangle to base of soil
horizon.mature oak woodland; loess hills of Peoria loess;10%slope uphill from
GCPLG.Sampled by Buell, J.Harden, J.Gaudinski, S.Trumbore

GCPL1. Goodwin Creek Profile Lower slope no. 1; slightly eroded Grenada
soil;located in subwatershed of watershed 10 in Goodwin Creek; USDA
NSLdescribed and sampled by JHarden on 12-4-96 with shelby tube to 40 cm and
then cut into horizons in lab mature oak forest of loess hills in Peoria Loess

GCPL2. Goodwin Creek Profile Lower slope no. 2; uneroded Grenada soil ; located
in subwatershed of watershed 10 in Goodwin Creek; USDA NSLdescribed and
sampled 3-8-97 with shelby tube within 1-2 m of GCPL1 by JHarden and
THuntingtonmature oak forest on Peoria Loess; local slope 0-3% at base of 500m?
slope of 10%; site grades into subtle alluvial terrace est. 400m downslope and east
of GCPU profilesquite wet; too wet at depth to sample below 50 cm

GCPL3. Goodwin Creek Profile Lower slope no. 2; uneroded Grenada soil;located
in subwatershed of watershed 10 in Goodwin Creek; USDA NSLdescribed and
sampled 3-8-97 with shelby tube within 1-2 m of GCPL 1;2 by J.Harden and
;L.Keith mature oak forest on Peoria Loess; local slope 0-3% at base of 500m? slope
of 10%; site grades into subtle alluvial terraceest. 400m downslope and east of
GCPU profiles

GCPL5 . Goodwin Creek Profile Lower slope no. 5; uneroded Grenada soil;located
in subwatershed of watershed 10 in Goodwin Creek; USDA NSLdescribed and
sampled from pit face 11-15-97 for bulk density and moisture to a depth of 60 cm
using Bulk Density core (whomper) and Hrings and from 60 to 100 cm using
modified shelby AMS core. Litter samples collected by excavating rectangle to base
of soil horizon.mature oak woodland; loess hills of Peoria loess;10%slope uphill
from GCPLG.Sampled by Buell, J.Harden, J.Gaudinski, S.Trumbore

GCPV 1. Goodwin Creek Valley located downstream from GCPL valley "bottom"
only 3 m wide just above the confluence with another small drainagesampled for
bulk analysis to see if C is older or more abundant in depositional foci.

NFPU1. Nelson Farm Profile Upper slope no. 1 located midway up watershed 2 of
NF on west side of filled gully; moderately eroded Grenada soil;described 12-3-96
and sampled 12-3-96 with shelby tube and for incubation 12-5-96 at
4pmbeare;slightly weedy soybean field; loess hills in Peoria loess; slope 8%JHarden
and THuntington



NFPU3. Nelson Farm Profile Upper slope no.3 sampled in triplicate from holes
1;2;3;moderately eroded Grenada soil; located midway up watershed 2 of NF on
west side of filled gully;100m upslope from NFPL sitesHole 1 very wet at depth;
most downslope; hole 2 very wet at 40-60cm; hole 3 driestdescribed and sampled
3/6/97 am by JHarden and LKeith with shelby tube; water saturates hole on
excavationbare ground soy field; with some grasses 8-10% slope with E/NE aspect

NFPUS. Nelson Farm Profile Upper slope 5 sampled in triplicate from pit face with
Bulk Density core (whomper) and H-ring for field moisture and bulk density only.
located in same area as NFPU1-4collected 11/11/97 by G.Buell, J.Gaudinski,
J.Harden

NFPL1. Nelson Farm Profile on Lower slope; located in watershed 2 just west of
filled gully described and sampled 12-2-96 with shelby tube to 40 cm depth bare;
slightly weedy soy field in Peoria Loess material; 1-3% slope; east aspect

NPPL3. Nelson Farm Profile on Lower slope; located in watershed 2 just west of
filled gully described and sampled 3/6/97 with shelby tube to 60 cm and with open
corer to 100cm bare; slightly weedy soy field in Peoria Loess material; 1-3% slope;
east aspect JHarden and THuntington

NFPL6. Nelson Farm Profile on Lower slope; located in watershed 2 near NFPL1-
3; described and sampled 11-12-97 from pit face with Hring and BulkDensity core
(whomper) for density and moisture only. GBuell, J Gaudinski, JHarden

NFPV 1. Nelson Farm Valley downslope of weir of watershed 2 on USDA NSL
plotsdescribed and sampled with shelby tube to 100 cmwooded (hardwood, shrubs)
braided depositional lobes with gully incision . JHarden and THuntington

NFPV3. Nelson Farm Valley at confluence of USDA plots with homestead fields.
Go downstream along stream below watershed 2 to railroad; sampled about 40m up
from railroad wooded (hardwood, shrubs) braided depositional lobes with gully
incision NFNF2.

Nelson Farm Plot Fallow; old fallow plot of Romkins in watershed 3; 5 to 10 yrs as
fallow plot as of 1996

NFNEF2. Nelson Farm New Fallow 2 in fifth erosion plot to north from edge;
maintained as no-till soybean NFNF was to be used as a new fallow site but was
changed to used as erosion plot for som fractionation samples;Sampled in triplicate
for C,bulk dens. and moisture using shelby core 3-5% slope, NE aspect; at top of
watershed 3; currently dead soy with grass,weeds; described and sampled 3/6/97 by
JHarden
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miss_psize

GCPU25a
GCPU 2.10a

GCPU 2.20a

GCPU 2.40a
GCPU 2.50a

SampleID USDASAND __ USDACOSI . USDAFISI ' USDACL . WSAND

GCPL 2.5a
GCPL 2.10a

GCPL 2.40a

. GCPL 3. 10 a
 GCPL3320a

GCPL3 3.40a
GCPL3 3.20a

~ NFPU3.5 a1+a2+a3_
NFPU3.10al +a2+a3

NFPU 3.60 al

NFPU 3.80 al

NFPL340a1rJ1a2




miss_psize

GCPU 2.5a
GCPU 2.10a ;
GCPU 2.40a

 GCPU 2.50a

. GCPU3.S5a o 799
GCPU 3.10a

GCPU 3.20a
GCPU 3.40a

..GCPU3.50a
GCPU 3.60a

GCPL 252
GCPL 2.10a

GCPL220a .~ . 641
___________________ GCPL240a  .....072

GCPL 2.50a
GCPL3.5a

GCPL3 3.40a
_________________ GCPL33.20a . .NDo

GCPL33.40a
GCPL 3.50 a

NFPU3.10al+a2+a3 562
NFPU320ala2 =~~~ 604
NFPU 3.40 al
____________ NFPU360al 560

_ NFPU380a1 =~ 552
. NFPU3.10021 562 i 495 . 00
 NFPL3.5al+a2+a3 '
......... NFPL3.10al+a2+a3 696
. NFPL320al;a3
. NFPL340ala2
NFPL 3.60al
,,,,,,,,,,,,,, NFPL380al 623 . 483 i .00
NFPL3.100a1 628 446
NFPL32022 ND |  ND

NFPL 3.40 alrep;a2




Miss_Isotope

Profile Sample Depth LablD Type Del13C Del14C LABSD
1D # (cm)

BCPR 1.5m, ab 0-5 UCIT3071 bulk soil -25.0 1758 6.5
BCPR 1.10 m,ab 5-10 UCIT3072 bulk soil -24.4 175.9 6.0
BCPR 1.20 m,ab 10-20 UCIT3073 bulk soil -24.0 94.9 6.1
BCPR 1.40 m,ab 20-40 UCIT3074 bulk soil -24.2 43 58
BCPR 1.60 m,ab 40-60 UCIT3075 bulk soil -224 -26.9 54
BCPR 1.80 m,ab 60-80 UCIT3076 bulk soil -234 494 53
BCPR 1.100 m,ab 80-100 UCIT3077 bulk soil -22.8 -158.6 47
BCIR 2.20F1 0-20 UCIT3080 bulk soil -23.9 167.5 9.2
BCIR 2.40F1 20-40 UCIT3081 bulk soil -24.5 56.1 83
GCPR 1.0rgl m,ab NA UCIT3064 bulk soil -28.6 109.9 6.0
GCPR 1.0rgl m,ab NA UCIT3065 bulk soil -27.8 135.5 6.2
GCPR 1.5 m,ab 0-5 UCIT3066 bulk soil -26.8 171.6 6.4
GCPR 1.10 m,ab 5-10 UCIT3067 bulk soil -25.9 121.4 6.1
GCPR 1.20m,ab 10-20 UCIT3068 bulk soil -258 87.5 44
GCPR 1.40 m,ab 20-40 UCIT3069 bulk soil -24.2 -16.2 54
GCPR 1.60 m, ab 40-60 UCIT3070 bulk soil -233 -84.1 38
NFPR 2.5m, ab 0-5 UCIT3059 bulk soil -25.1 153.8 5.6
NFPR 2.10m, ab 5-10 UCIT3060 bulk soil -23.7 1534 6.0
NFPR 2.20 m,ab 10-20 UCIT3061 bulk soil -22.9 104.2 6.3
NFPR 2.40 m,ab 20-40 UCIT3062 bulk soil -22.7 -192.1 4.1
NFPR 2.60 m,ab 40-60 UCIT3063 bulk soil -23.0 -208.9 48
NFIR 1.20F1 0-20 UCIT3078 bulk soil -24.9 126.1 6.2
NFIR 1.40F1 20-40 UCIT3079 bulk soil 21.7 -81.2 58
NFcgR1 11.14.97 NA UCIT2835 | chamber gas (-25) 97.1 55
NFcgR2 11.14.97 NA UCIT2830 | chamber gas (-25) 76.5 6.0
GCPU 1.20i1 0-20 UCIT/J001 bulk soil -25.9 139.1 6.7
GCPU 1.4011 20-40 UCIT/J002 bulk soil -24.0 1129 53
GCcgUl1 11.15.97 NA UCIT2831 | chamber gas (-25) 103.6 5.6
GCPL 1.20i3 0-20 UCIT/J003 bulk soil -26.8 157.8 59
GCPL 1.40i3 20-40 UCIT/J004 bulk soil -239 1199 55
GCcgl 1 11.15.97 NA UCIT2833 | chamber gas (-25) 110.7 5.6
NFPU 1.20i2 0-20 UCIT/J005 bulk soil -24.5 1252 6.0
NFPU 1.40i3 20-40 UCIT/J006 bulk soil -21.3 -83 6.1
NFcgU1 11.11.197 NA UCIT2834 | chamber gas (-25) 63.9 59
NFPL 1.20i1 0-20 UCIT/3007 bulk soil -23.9 121.0 6.7
NFPL 1.40i1 20-40 UCIT/J008 bulk soil -20.7 123.2 6.8
NFcgL1 11.11.97 NA UCIT2829 | chamber gas (-25) 105.5 49
NFcgl.2 11.11.97 NA UCIT2832 | chamber gas (-25) 78.9 6.1
NFPF 1.20a 0-20 UCIT/J009 bulk soil -25.0 158.7 7.0




